최근 머신러닝에 대한 관심이 높아지고 기술이 발전함에 따라, 사람이 직접 수행하던 반복적인 작업들이 자동화되고 해결하지 못했던 문제들이 해결되고 있습니다. 시간이 지남에 따라 데이터는 계속해서 축적되고 있습니다. 이 방대한 양의 데이터를 학습하기 위해 더 크고 더 복잡한 모델이 계속해서 제안되었으며, 트랜스포머는 그중 가장 큰 혁신을 일으켰습니다. 이제 트랜스포머는 모든 인공지능 분야의 기본 소양입니다.
이 책은 트랜스포머의 기본 개념과 작동 방식에 대한 풍부한 정보를 제공합니다. 이 책을 통해 BERT, RoBERTa, GPT-3 등 다양한 트랜스포머 모델의 장단점과 사용 사례를 탐색하여 기계 번역, 감정 분석, 가짜 뉴스 탐지 등의 문제에 활용하는 방법을 이해할 수 있습니다. 또한 블랙박스처럼 감춰진 트랜스포머 모델을 해석하는 방법을 배우고, 모델이 어떻게 결정을 내리는지 이해하면서 모델의 신뢰성을 높일 수 있습니다. 마지막으로 초인간 트랜스포머의 등장과 OpenAI의 ChatGPT 및 GPT-4와 같은 트랜스포머 기술의 최신 동향에 대해 알아볼 수 있습니다.