알라딘

헤더배너
상품평점 help

분류

이름:이판호

최근작
2024년 5월 <확률론적 머신러닝 : 기본편>

이판호

성균관대학교 통계학과를 졸업했으며, 한국 및 싱가포르에서 주로 금융업 및 소프트웨어 개발 분야에 종사했다. 머신러닝의 이론적 이해 및 금융 데이터 응용에 관심이 많다. 에이콘출판사에서 펴낸 『스칼라와 머신러닝』(2018), 『통계학으로 배우는 머신러닝』(2021), 『딥러닝 초보자를 위한 엔비디아 가이드북』(2023) 등을 번역했다. 현재는 국내에서 보안 솔루션의 엔지니어로서 많은 영어 화상회의를 하며 일하고 있다.  

대표작
모두보기
저자의 말

<딥러닝 초보자를 위한 엔비디아 가이드북> - 2023년 2월  더보기

딥러닝으로의 첫 여행을 시작하신 분들을 환영합니다. 또한 딥러닝 입문을 위해 이 책을 선택하신 여러분께 찬사를 보내 드립니다. 왜냐하면 여러분은 가장 탁월한 선택을 하셨기 때문입니다. 지금부터 수많은 딥러닝 책 중에서 왜 이 책이 좋은 선택이 될 수 있는지 말씀드리겠습니다. 딥러닝 기술이 발전하고 널리 보급됨으로 인한 장점 중 하나는, 예측 또는 그 비슷한 것을 무언가 부담스러운 과학의 관점에서 기술의 관점으로 바라보기가 더 쉬워졌다는 점이라고 생각합니다. 다르게 말하자면, 배경지식에 너무 신경 쓰지 말고 일단 데이터에서 유의미한 결과를 얻는 데 집중하게 되었다는 것입니다. 저자도 이 점에 대해 6장 마지막에 비슷한 의견을 표명하고는 있습니다. 하지만 초보자의 입장에서 보면, 수학에 대한 부담감은 잠시 내려놓고 자세한 설명으로 이론을 배우며 풍부한 예제 코드로 여러 가지를 시도해보면서 학습하는 것이 딥러닝을 배우는 좋은 방법이 될 수 있다고 생각합니다. 그리고 이 책은 이를 위한 좋은 시작점이라고 말씀드릴 수 있습니다. 이 책은 많은 수학적 지식이 필요하지 않습니다. 미적분에 대한 약간의 지식이 있는 것으로 충분합니다. 행렬대수학에 대해 조금 안다면 더욱 좋겠지만, 너무 걱정할 필요 없습니다. 이 책에서 별도로 잘 설명해주고 있기 때문입니다. 통계학이나 확률론이 익숙하지 않더라도 읽는 데 큰 문제는 없다고 생각합니다. 이 책은 수학 공식에 의존하기보다는, 말과 그림으로 자세히 설명하는 것을 시도합니다. 저도 번역하면서 어떻게 이렇게까지 자세히 설명해줄 수 있을까 하고 놀란 적이 한두 번이 아니었답니다. 이 책은 퍼셉트론에서 시작하여 DNN, CNN, RNN을 거쳐 비교적 최근 아키텍처인 트랜스포머에 이르기까지 주요 모델과 아키텍처를 차근차근 설명해줍니다(요즘 많이 회자되고 있는 ChatGPT는 트랜스포머 아키텍처를 기반으로 하고 있습니다). 이 책에서는 수학적 지식보다는 파이썬 활용이 중요하다고 할 수 있습니다. 물론 책을 읽기만 해도 배경지식을 얻는데 도움이 되겠지만, 이미지 분류 및 자연어 처리에 관해 잘 짜인 예제 코드를 직접 실행하고 실험해본다면 학습의 폭을 더욱 넓힐 수 있을 것입니다. 여러분의 딥러닝으로의 첫걸음에 응원을 보내면서, 이 책이 작게나마 도움이 되길 바랍니다.

가나다별 l l l l l l l l l l l l l l 기타
국내문학상수상자
국내어린이문학상수상자
해외문학상수상자
해외어린이문학상수상자